
Perceptrons: AI on Bitcoin

Abstract. Perceptrons is an experimental attempt to deploy run-time AI
on-chain. While many projects have attempted to store AI artworks (outputs
from AI models) on-chain, Perceptrons attempts to store the actual AI
models themselves (the neural networks that produce the outputs)
on-chain. Not only are the models stored on-chain, but the feed-forward
algorithm is also stored on-chain. Not merely a static piece of art—you can
interact with Perceptrons by asking them to do image recognition tasks.
Perceptrons permanently live on the Bitcoin network—ever evolving. They
grow. They die. And finally, they’re reborn again in a different form.
Perceptrons are also upgradeable, i.e., you can plug a newer, smarter
model into a Perceptron, which will change both the artwork and the brain
behind the artwork. We believe this could open up an entirely new market:
buying and selling data for upgradable dynamic artworks.



1. Introduction

Since the mid-1950s, AI has fascinated humans, from research labs to pop culture. And
today, AI is integrating itself into the fabric of everyday life: our phones, speakers, cars,
writing—the list grows daily. But how does AI actually work?

Most of us think of AI as a black box—an abstract concept understood by a handful of
Silicon Valley experts. We rarely pause to think about what exactly is taking place and what
is “under the hood.”

Perceptrons is a collection of unique neural networks living on the Bitcoin network in
perpetuity. And with this collection, we strive to achieve the following:

1. Art. Explain how AI works in a simple and visually striking way—through the lens of
a long-form generative art collection.

2. On-chain data.We store the neural network models fully on-chain. There’s a
distinction between an AI model and its outputs. AI artworks today are not
AI—they’re simply outputs created by artists who use AI models. Bitcoin makes this
possible by providing large on-chain storage with its Taproot upgrade.

3. On-chain logic. Not only are the models stored on-chain, but the feed-forward
algorithm is also stored on-chain. We wrote a neural network from scratch in vanilla
JavaScript that’s part of a single HTML file stored on-chain with no external
off-chain dependencies.

4. Dynamism. Each Perceptron is responsive to on-chain activity, such as block time
and sat fees. The block time determines the age of the model, its intelligence, and
its appearance. The sat fees affect how the artwork is animated.



5. Interactivity. People can interact with Perceptron. In fact, you can ask the neural
network to perform an image recognition task.

6. A new life form.We also experiment with the concept of AI as another life form.
Perceptrons are autonomous—they grow. They age. They’re reborn. And they live
one life after another forever on the Bitcoin network.

7. Upgradable AI. For their longevity, we program Perceptrons so their model can be
plugged and played. Each Perceptron is born with a default neural network model.
But you can upgrade it to a smarter, more advanced model later.

8. Upgradable Artwork. Since the artwork is a portrait of the neural network, once you
upgrade the neural network model, the artwork will also be upgraded accordingly.
Not only are you able to upgrade the brain, but you’ll also see its new face.

9. Data Markets.We believe that our modular design approach opens up an entirely
new primitive: data inscription. In the future, there could be multiple data
marketplaces where collectors can buy data inscriptions to upgrade their artwork.

But to get a better idea of what’s going on, let’s dive into how Perceptrons works.

2. The Neural Network Architecture Generator



The first component of Perceptrons is the Neural Network Architecture Generator. The
Generator programmatically creates different neural net architectures with various elements
such as the number of layers, the number of neurons, and the type of activation function.

Different neural networks have different architectures, described by a raw JSON metadata
file. The general structure of the file consists of 5 fields:

● Model_name: Describe the name of the network.

● layers_config: Describe the structure of the network. The example perceptron
contains the following layers:

○ The input layer that accepts images of size 32 x 32 x 3.
○ The rescaling layer that scales input values from the range [0; 255] into range

(-1; 1).
○ The flattening layer that turns 32 x 32 x 3 images into 3072-dimensional

vectors.
○ 3 hidden layers with 10, 8, and 10 neurons, respectively, that use the

LeakyReLU activation function.
○ The output layer that reports how much the model thinks the image belongs

to each class.

● weight_b64: The weight of all parameters of the perceptron in base64 format. More
formally, suppose that there are n hidden layers. Let and the weight matrix and𝑊

𝑖
𝐵
𝑖

the bias vector of the i-th layer, and the weight matrix of the output layer. We𝑊
𝑜𝑢𝑡

perform the following process to encode the parameters weight:
○ Flatten all the weight matrices:

𝑊[𝑥𝑐 + 𝑦] = 𝑊[𝑥, 𝑦]
where c is the number of columns of the matrix

○ Concatenate all flattened weight matrices and bias vector of each layer:

𝐿 = 𝑊
1
+ 𝐵

1
+ 𝑊

2
+ 𝐵

2
+ … + 𝑊

𝑛
+ 𝐵

𝑛
+ 𝑊

𝑜𝑢𝑡

○ Convert each element of L to float32 datatype (4 bytes), then convert L to
binary data and apply base64 encoding to the binary data.

● training_traits: The traits used to dictate the structure generation and the
training process of the perceptron model.

● classes_name: The name of image classes that the model will classify.

To give you a clearer picture, here’s an example of the JSON metadata file of the neural
network architecture behind the artwork.



01: {
02: “model_name”: “pfp_classifier_0000”,
03: "layers_config": {
04: "config": {
05: "layers": [
06: {
07: "class_name": "InputLayer",
08: "config": {
09: "batch_input_shape": [null, 32, 32, 3]
10: }
11: },
12: {
13: "class_name": "Rescaling",
14: "config": {
15: "scale": 0.00784313725490196,
16: "offset": -1
17: }
18: },
19: {
20: "class_name": "Flatten"
21: },
22: {
23: "class_name": "Dense",
24: "config": {
25: "units": 10,
26: "activation": "leaky_relu"
27: }
28: },
29: {
30: "class_name": "Dense",
31: "config": {
32: "units": 8,
33: "activation": "leaky_relu"
34: }
35: },
36: {
37: "class_name": "Dense",
38: "config": {
39: "units": 10,
40: "activation": "leaky_relu"
41: }
42: },
43: {
44: "class_name": "Dense",
45: "config": {
46: "units": 4,
47: "activation": "linear"
48: }



49: }
50: ]
51: }
52: },
53: "weight_b64":
"ZFT+u05bozsi1ws9DSAVPcdzfz2N0Fi90Pb9vCzGzTxcvF09OCvCO2lUHT2QVVu8...",
54: "training_traits": {
55: "structure_gen": "Symmetric",
56: "n_layers": 7,
57: "max_nodes": 16,
58: "activation_func": "LeakyReLU",
59: "epoch_num": 5
60: },
61: "classes_name": ["Cryptoadz", "Cryptopunks", "Moonbirds", "Nouns"]
62: }

And here’s the visualization of the above neural network architecture—a portrait of the
neural network.



3. The Neural Networks
A Perceptron is a unique neural network and is programmatically generated from over 100
traits, including layers, neurons, activation functions, and various visual features.

Each Perceptron is trained, and its model weights are stored fully on-chain on Bitcoin. The
feed-forward algorithm is also stored on-chain.

The artwork is a visual representation of the neural network architecture. Think of it as the
portrait of a neural network. While most of us use neural networks as a black box today, we
hope through this work, people will understand more about how neural networks operate
behind the scenes.

4. 100% On-Chain
Perceptrons are inscribed as Ordinal Inscriptions on the Bitcoin network. They’re fully
on-chain on Bitcoin with no external off-chain dependencies. This means no IPFS, no AWS,
and no Google Cloud. They live on the Bitcoin network in perpetuity. As long as there is at
least one Bitcoin node running, Perceptrons live.



The following data is stored fully on-chain with no off-chain dependencies:

1) The model weights
2) The neural network code
3) The long-form generative artwork code
4) The interaction UI/UX code

5. Datasets
Initially, perceptrons are trained on Generative’s PFP Dataset with 37,014 raw images and
another 150,000 augmented images. The raw dataset includes PFPs from four collections:
CryptoPunks, Nouns, CrypToadz, and Moonbirds. We also augmented the dataset. The
dataset is open-sourced on Github.



Each perceptron can be upgraded to use a smart, better model to perform more complex
image recognition tasks. After the launch, we plan to work on Generative’s Art Dataset
with artworks from ArtBlocks, FxHash, and Generative.

6. Run-time and Interactive AIs

Each Perceptron is trained as a classifier. You can give it an image, and it’ll answer what
that image is. To make this work “in run-time” inside a browser, we wrote a neural network
from scratch in Javascript. The code of the neural network is also stored on-chain.



For example, in the initial model, you can input an image, and a Perceptron can classify if
the image is a punk, toad, noun, or bird. In the future, you can upgrade it to a better, faster
model.

7. Eternally living and evolving AI

When you collect a Perceptron, you’re not simply buying a long-form generative AI artwork
or a rare piece of collectible on Bitcoin with historical significance. You’re collecting an AI
that lives forever.



Your AI permanently lives on the Bitcoin network—ever evolving. It grows. It dies. And
finally, it’s reborn again in a different form.

The life cycle of a perceptron

Each Perceptron starts out with a small number of neurons and then grows over time.



As it gains more neurons, it becomes smarter at image recognition tasks.

Like a human brain, once it reaches maturity, it performs at its strongest.

After a stable period, it enters a “decay phase.” Its neurons start to age, losing connections
with one another. This leads to a decline in intelligence until there are no connections left
among the neurons. And it simply stops functioning.



Then, it dies. Returning the frame to a blank slate.



But this is not the end of the story. It’s reborn and continues the endless cycle of life.

And at the micro level, each neuron also has its own different phases of life.

The life cycle of a neuron

8. Upgradable AI

One important feature is that you can upgrade a Perceptron model.

Instead of using a single inscription, we design a multi-inscription architecture, separating
the code for the artwork (into the “art” inscription) from the data of the neural network (into
the “data” inscription).

Initially, each Perceptron comes with a default neural network model, but you can press U
to update the model address. In the future, you can press U to update the neural network
architecture and model weights by giving a new “data” inscription address.

This element will bring longevity to the artwork.





9. Data Markets for Upgradable Artworks

Our modular design approach opens up a new primitive: data inscription.

In the future, there could be multiple data marketplaces where collectors can buy data
inscriptions to upgrade their artwork, and AI/ML engineers can train neural network models,
package them as data inscriptions, and sell them.

This approach will work with other artworks as we generalize the data set beyond neural
network models. This includes data such as stock pricing, blockchain, and weather.

10. Color Palettes



Whitepaper (2%) Blackboard (2%) Blueprint (2%) Nak (5.2%) Jims (5.2%)

Level 10 (5.2%) Flips (5.2%) Level 14 (5.2%) III (5.2%) XMB (5.2%)

Info (5.2%) Adventure (5.2%) Marigold (5.2%) Phoenix (5.2%) Love (5.2%)

Cachet (5.2%) Human (5.2%) Twilight (3%) Sunset (3%) Aurora (3%)

Liminal Space (3%) Déjà Vu (3%) Lucid Dream (3%) Parallel (1%) Multiverse (1%)



11. Features

Here are the key neural network traits.

Number of hidden layers 1 - 4 (Sigmoid) / 1 - 10 (Other function)

Number of maximum neurons per hidden layer 5 - 20

Network architecture Random Triangle (50%), Random (20%), Regular
Symmetric (10%), Zig Zag (10%), Triangle (5%),
Rectangle (5%)

Activation function ReLU (50%), LeakyReLU (20%), tanh (20%),
Sigmoid (10%)

Number of training epochs 8 - 12 (Sigmoid) / 4 - 6 (Other function)

Dataset (Fill mode) MNIST (70%), CIFAR (25%), IMAGENET (5%)

Deep learning framework (Shape) Theano (60%), Torch (30%), TensorFlow (10%)

Hardware acceleration (animation speed) Basic (30%), Standard (60%), Advanced (10%)

Paper pattern Plain (20%), Dotted (40%), Squared (40%)

Color palette See above

Birth Year See below

Birth year is a special trait. It’s used to calculate the age of the Perceptron, which influences
how intelligent the Perceptron is at each point in time. The following chart outlines the
history of AI from its inception until today.

Year (Rarity) Description

1943 (1%) First artificial neuron model was proposed by Warren McCulloch and
Walter Pitts as an attempt to model biological neurons mathematically.

1951 (1.5%) SNARC — the first neural network machine that can learn, was built by
Marvin Minsky and Dean Edmonds.

1957 (2%) Single layer perceptron was invented by Frank Rosenblatt.

1969 (2.5%)
Limitation of the perceptron model is outlined in the book “Perceptrons”
by Marvin Minsky and Seymour Papert, which led to a decline in AI
research for the next 10 years.

1970 (3%) Automatic differentiation method was published by Seppo Linnainmaa.



1980 (3.5%) Neocognitron—the first Convolution Neural Network model, was invented
by Kunihiko Fukushima.

1982 (4%) Hopfield Network—proposed by Jon Hopfield—sparked the interest in NN
research again and later inspired recurrent neural network research.

1986 (4.5%)
The term “Backpropagation” was coined by David Rumelhart, Geoff
Hinton, and Ronald J. Williams in their application of Seppo Linnainmaa's
work.

1988 (5%)
Universal approximation theorem (stating that a feedforward network with
at least one hidden layer can approximate any function) was proved true
by Kurt Hornik.

1997 (5.5%) Long short-term memory (LSTM) recurrent neural networks were
proposed by Sepp Hochreiter and Jürgen Schmidhuber.

1998 (6%)
The first image recognition system (LeNet-1) was proposed by Yann
Lecun, which is a CNN trained using backpropagation. Release of MNIST
(hand-written digit) dataset.

2002 (6.5%) Torch, a software library for machine learning, was released.

2009 (7%)
Release of ImageNet dataset (a large dataset of real-world images).
Since then, the ImageNet Large Scale Visual Recognition Challenge has
been hosted annually.

2012 (7.5%)

AlexNet was released and won the 2012 ImageNet Large Scale Visual
Recognition Challenge—marking the start of the deep learning era.

Google Brain released The Cat Experiment.

2014 (8%) Generative Adversarial Networks (GAN) were introduced by Ian
Goodfellow.

2015 (8.5%) TensorFlow was released by the Google Brain team.

2016 (9%) Google’s AlphaGo program became the first computer program to beat
Lee Sedol.

2023 (15%) Generative Brains were released on the Bitcoin network

There are also two other attributes that indicate the current state of Perceptrons.

Life Cycle 60 Years (3%), 60 Months (40%), 60 Weeks (37%), 60 Days (20%)

State Growing, stable, decaying, dead, rebirth



12. Summation

We’ve introduced a new form of artwork that is on-chain, dynamic, interactive, upgradeable,
and—most importantly—intelligent. The first component is a Neural Network Architecture
Generator, which programmatically generates neural network architectures that complete
image recognition tasks. We then train these neural networks with an initial dataset—the
Generative’s PFP. These artworks are autonomous—they grow. They age. They’re reborn.
And they live one life after another—forever—on the Bitcoin network. These neural networks
are programmed to be upgradable, so we can feed them smarter, better models so they can
perform more complex tasks. We believe this could also open up an entirely new market:
buying and selling data for upgradable dynamic artworks.

Appendix A: Open Source

At Generative, we believe that open source is the best way to make a contribution to the
community at large. Ideally, we’d like to open-source everything we build. And for this
endeavor, we’re releasing the following source code for the following:

● Long-form generative artwork
● Javascript neural network



● Python neural network training
● Datasets

The code is published at https://github.com/generative-xyz.

Appendix B: Sample Outputs

Here are some of the sample outputs from the long-form generative code.

https://github.com/generative-xyz


Appendix C: How to collect Perceptrons

Collect by Deep Learning Framework - Node Shape (Example: Torch Framework - Square)



Collect by Data Set - Node fill mode (Example: MNIST Data Set - Solid)

Collect by Network Architecture (Example: Symmetric Architecture)

Collect by Color Palette

Technical palette

Whitepaper Blackboard Blueprint

Sky palette

Twilight Sunset Aurora



Liminality palette

Liminal Space Déjà Vu Lucid Dream

Parallel Multiverse palette

Parallel Multiverse


